
Question 1 
 
a. Predicting whether a patient has COVID or not. 
Classification. 
b. Grouping similar news together. 
Clustering. 
c. Predicting the genre of a book. 
Classification. 
d. Predicting your percent grade in this course. 
Regression. 
e. Recognizing English characters in an image. 
Classification. 
f. Folding the laundry automatically. 
Reinforcement Learning. 
g. Predicting if the weather will be cold, warm, or hot tomorrow. 
Classification. 
h. Playing chess 
Reinforcement Learning. 
 

Question 2 
 
ML is not needed where we don't have the data. Another domain is the Markov Decision 
Process. They have the potential to grow computationally huge! 
Another problem is that of data cleaning. We don't need ML to do that. 

Question 3 
 
Classification accuracy for a random classifier is: 

Accuracy = 1/k (k is the number of classes)  
In binary classification, k=2: 
So, the accuracy will be: 1/2 = 50% 

Question 4 
 
Because we have to stop after our maximum depth, the last node becomes the terminal node 
which determines the outcomes! 



1: terminal(guess) 
2: outcomes = [row[-1] for row in guess] //we are selecting the most common class value 
3:            set= (set(outcomes), key=outcomes.count) //we are creating a set of different                
outcomes: yes or no. and then the key corresponds to the count of each outcome 
4: return max(set) //the outcome with most count is our final prediction 
 
DecisionTreeTrain(data,remaining features) 
1:       
2:  if the labels in data are unambiguous then  
3:   return terminal(guess) // base case: no need to split further 
4:  else if remaining features is empty then 
5:   return terminal(guess) 
6:          else if depth==3 
7:                     return terminal(guesses) //we might not have a single guess value. 
8:  else if depth<3 // we need to query more features 
9:   for all f ∈ remaining features do // we are selecting the best fetaure 

10:    NO ← the subset of data on which f=no 

11:   YES ← the subset of data on which f=yes 

12:   score[f] ← # of majority vote answers in NO 
13:  + # of majority vote answers in YES// the accuracy we would get if we only queried on f 
14:   end for 
15:  f ← the feature with maximal score(f) 

16:  NO ← the subset of data on which f=no 

17:  YES ← the subset of data on which f=yes 
18:  depth= depth+1 
19:  left ← DecisionTreeTrain(NO, remaining features \ {f }) 

20:  right ← DecisionTreeTrain(YES, remaining features \ {f }) 
18:  return Node(f, left, right) 
19:  end i 
 
b.  
We don’t have to change anything because we have a pre-made tree which will give us the 
answer! 

Question 5 
 



 
 
We have five ‘YES’ and four ‘NO’. So, we calculate the probability of our output variable that is 
‘PlayTennis.’ It is (-0.36)log(0.36)-0.64log2(0.64). It comes to be 0.94.  So we need to have 
more Information Gain. 
So, let’s select the first splitting attribute: 
Humidity.. 
Entropy of High where we have 3+ and 4-, so our entropy will be 0.985 
Entropy of Normal where we have 6+ and 1-, so our entropy will be 0.592 
So, Humidity gain is: Gain(P, Humidity) = 0.94-(7/14)*0.985-(7/14)*(0.592) = 0.151 
 
Wind.. 
Entropy of Weak where we have 6+ and 2-, so our entropy will be 0.811 
Entropy of Strong where we have 3+ and 3-, so our entropy will be 1.0 
So, Wind gain is: Gain(P, Wind) = 0.94-(8/14)*0.811-(6/14)*(1.0) = 0.048 
 
Outlook.. 



Entropy of Sunny where we have 2+ and 3-, so our entropy will be 0.971 
Entropy of Overcast where we have 4+ and 0-, so our entropy will be 0.0 
Entropy of Rain where we have 3+ and 2-, so our entropy will be 0.971 
So, Outlook gain is: Gain(P, Outlook ) = 0.94-(5/14)*0.811- 0 -(5/14)*(1.0) = 0.247 
 
Temperature.. 
Entropy of Hot where we have 2+ and 2-, so our entropy will be 1. 
Entropy of Cold where we have 3+ and 1-, so our entropy will be 0.811 
Entropy of Rain where we have 4+ and 2-, so our entropy will be 0.918 
So, Temperature gain is: Gain(P, Temperature) = 0.94 - 0.811*(4/14) - 1*(4/14)  - 0.918*(6/14 ) 
= 0.029 
 
The one with the maximum split is OUTLOOK. 
 
 

 
 
Now, We have to decide for the appropriate feature at the question marks. 
Let’s start with the sunny! 
When it comes to sunny, we have 2+ and 3-. These belong to 1, 2, 8, 9, 11 data instances. 
Entropy of Sunny is -⅖ log2 ⅖ -⅗ log2 ⅗ = 0.97. 
Temperature: 

Entropy of S_hot is 0.0(0+,2-) 
Entropy of S_cold is 0.0(1+,0-) 
Entropy of S_mild is 1.0(1+,1-) 
So, Gain(Sunny, Temp)= Entropy(Sunny)-⅖(S_hot)-⅕(S_cold)-⅖ (S_mild)= 0.570. 

Humidity: 
            Entropy of S_high is 0.0(0+,3-) 

Entropy of S_normal is 0.0(2+,0-) 
So, Gain(Sunny, Humidity)= Entropy(Sunny)-⅗ (S_high)-⅖ (S_normal)= 0.970. 

Wind:  
Entropy of S_strong is 1.0(1+,1-) 
Entropy of S_weak is 0.9183(1+,2-) 
So, Gain(Sunny, Wind)= Entropy(Sunny)-⅗ (S_weak)-⅖ (S_strong)= 0.0192. 

Outlook 

?? YES ?? 

Sunny Outcast Rainy 



So, Humidity Will get selected!!! 
 
Now, our tree becomes 

 
 
When it comes to rain, we have 3+, 2-. 
Entropy of Rain is -⅖ log2 ⅖ -⅗ log2 ⅗ = 0.97. 
Temperature: 

Entropy of S_hot is 0.0(0+,0-) 
Entropy of S_mild is 0.9183(2+,1-) 
Entropy of S_cold is 1.0(1+,1-) 
So, Gain(Sunny, Temp)= Entropy(Sunny)- 0/5 (S_hot)-⅖ (S_cold)-⅗  (S_mild)= 0.0192. 

Humidity: 
            Entropy of S_high is 1.0(1+,1-) 

Entropy of S_normal is 0.9183(2+,1-) 
So, Gain(Sunny, Humidity)= Entropy(Sunny)-⅗ (S_normal)-⅖ (S_highl)= 0.0192. 

Wind:  
Entropy of S_strong is 1.0(0+,2-) 
Entropy of S_weak is 0.9183(3+,0-) 
So, Gain(Sunny, Wind)= Entropy(Sunny)-⅗ (S_weak)-⅖ (S_strong)= 0.970. 
 
So, Wind Will get selected!!! 

 

Outlook 

YES 
?? 

Sunny Outcast Rainy 

Humidity 

 

No 

Normal High 

{1,2,8} {9,11} 

Yes 



 
This is our final decision tree! 

 
 

Question 6 
 
It is because it is non-differentiable and discontinuous. So, the traditional optimization functions 
that we use for regression problems are not applicable to it. 

Question 7 
 
It is conceptually different because, without this type of bias, induction will not be possible at all. 
That’s because a problem can be generalized into many domains. Without inductive bias, the 
model will be able to classify the examples it has previously seen, but wouldn't be able to 
generalize well to the new, unseen data. 

Question 8 
If some of the models are performing exceptionally well and have a large enough dataset for 
training, we can just perform the spot-checking of these algorithms and select the best out of 
them. This approach is used most of the time. There is no need to retrain the model. If a 
hyperparameter tuning did the best, it doesn’t suddenly imply that the model itself performed 
really well. 
For example, Naive Bayes can perform well in the case of independent features. However, 
when it comes to dependent features, it doesn't perform very well. So, if our features are highly 
correlated, we might make the performance better by changing the hyperparameters. But that 
doesn’t automatically make Naive Bayes fit for our problem.  
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Question 9 
Once you have tuned your model, that’s the best you could achieve. Now, we are moving 
forward to test the generalization of our model on “unseen”, “test” data. If you temper with that, it 
will no longer be indicative of your model’s real performance. 
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