
Fruit Classification
5/13/2022

1. Overview 1

2. Design and Feature Set 1

3. Specifications of Model 2
3.1. Pseudocode for SVM 2
3.2. Mathematical Functions 3

3.2.1. SVM and its kernels: 4

4. Implementation and Testing 5
4.1. Manual for Users: 5
4.2. Table of training and testing files. 5
4.3. Classification Report 7

4.3.1. Confusion Matrix: 7
4.3.2. Performance Metrics Per Class: 7
4.3.3. Overall Metrics: 7
4.3.4. Summary of the Results: 8

1. Overview
We are going to do fruit classification using Apples, Bananas, and Oranges classes. Each of

these classes have 10 images.

2. Design and Feature Set
1. File Reading: First, we read the image using the imread() command

2. Image Resizing: Then, we do the resizing using the imresize()

2

3. File Preprocessing: Then, we have done the noise removal, binarization using OTSU

method, then we calculate the wavelet coefficients using the 2D Wavelet Transform.

4. Feature Matrix: Then, we will calculate the vertical, horizontal and diagonal coefficients,

and subsequently, their max values. We concatenate these values and store in a csv file.

The total number of features are 4.

5. Dataset: Then, this csv file is appended with the labels in the last column. This

represents our dataset. We have two csv files, namely, training.csv and test.csv. The

training file has

3. Specifications of Model
In order to train our model, we turn a linear SVM into a Multi Label one.

3.1. Pseudocode for SVM

Input Dataset[X,Y]; X(array with n features), Y(array of labels)

for learning_rate in number_of_runs:

error=0;

for value in X:

if(Y[values]*(X[value]*w))<1

then

w+=learning_rate*(Y[value]*(X[value])*(-2*(1/number_of_runs)*w)

else

3

w+=learning_rate*(-2*(1/number_of_runs)*w)

end if

end

end

3.2. Mathematical Functions

Let’s discuss the equations behind SVM. Firstly, dot product is intensely used like

We take an arbitrary value of c, and if X dot c is less than 0, X belong to negative class.

If X.c>0, then X belongs to positive class. If X.w=0, then, the point is on decision

boundary.

Similarly, we also make use of margins. To classify objects, we need a margin that has

the most distance between two classes.

To classify images as negative and positive, we make use of the following rules:

4

Optimization Function:

3.2.1. SVM and its kernels:

SVM supports different types of kernels, let’s discuss the sigmoid one.

It is defined as follows:

f(x, y) = tanh(alpha * x^T * y + C)

So, we are just taking a point a mapping it to 0 or 1, so it can be separated by a line. With

our data, rbf kernel was performing the best. The equation for it is as follows:

5

f(x1, x2) = exp(-gamma * ||x1 - x2||^2)

Gamma signifies how much effect a single training instance has on

the other points around it.

4. Implementation and Testing

4.1. Manual for Users:

1. In order to generate the data, and preprocess it, use the file

preprocess_images.m. It will convert your data into an xls format that you can

easily feed to your SVM model, or any other model. You have to provide the

function the absolute path of the directory where the data is, and also the class

label to which it belongs.

2. Then, for training and testing, we use the main.m file. You have to simply replace

the training and testing data files names in the code to your own, and provide

class labels using an array. Then, without passing any argument, run the main.m

file. It will also generate classification report.

4.2. Table of training and testing files.

In the Data\Apples directory:

`

Training Testing

1.jpeg 8.jpeg

2.jpeg 9.jpeg

3.jpeg 10.jpeg

4.jepg

5.jpeg

6

6.jpeg

7.jpeg

In the Data\Oranges directory:

`

Training Testing

1.jpeg 8.jpeg

2.jpeg 9.jpeg

3.jpeg 10.jpeg

4.jepg

5.jpeg

6.jpeg

7.jpeg

In the Data\Bananas directory:

`

Training Testing

1.jpeg 8.jpeg

2.jpeg 9.jpeg

3.jpeg 10.jpeg

4.jepg

5.jpeg

6.jpeg

7.jpeg

7

4.3. Classification Report

4.3.1. Confusion Matrix:

4.3.2. Performance Metrics Per Class:

4.3.3. Overall Metrics:

8

4.3.4. Summary of the Results:

Our results show us that our model has some difficulty in classifying the orange

and apple classes, which are classes one and three. That can be attributed to the

similarity of orange and apple shape. This can be minimized by used more robust

feature extraction techniques and increasing the training instances.

